
Architectural Management of Synchronous and

Asynchronous Interactions; a Reference Architecture

Model for Synchronous and Asynchronous Interactions

Juan Muñoz1, Jaime Muñoz
1
, Francisco J. Álvarez

1
, Francisco J. Álvarez

1
, Ricardo

Mendoza
1
, Humberto Cervantes

2

1 Universidad Autónoma de Aguascalientes, Av. Universidad 940,

20100 Aguascalientes, México

{ JMunoz, JMunozAr, FJAlvar}@correo.uaa.mx; mendozagric@yahoo.com.mx
2 Universidad Autónoma Metropolitana - Iztapalapa, San Rafael Atlixco 186, Col. Vicentina

09340 Delegación Iztapalapa, D. F., México

hcm@xanum.uam.mx

Abstract. Asynchronous and Synchronous interaction between humans and

systems are commonly implemented using differentiated architectural elements.

This causes a combination of components and connectors which expands

architectural models making them more complicated. In This paper we describe

a mechanism to combine both kinds of connections simplifying software

architectures at the same time that they can be used in hybrid ways to increase

software usability. The mechanism is implemented by means of a general

purpose component that can be used as a reference architectural element that

can be used in different systems.

Keywords: Software architecture, human interaction, synchronous

asynchronous interaction.

1 Introduction

Almost any (known) system has different relations with its environment. Interactions

have different effects in the system and the outputs produced by it. Those reactions

can be perceived immediately or not.

When we talk about information technologies we can identify many kinds of

systems. Also, users can be considered as systems.

Systems that are based on software are designed to interact with other systems in

its environment. Their functionalities must respond on different times to request of

information depending of volume, speed, order process, etc. Human interaction is one

of the most complex but common relations that must be established by software

programs.

We can identify synchronous and asynchronous interactions between a human

being and a software system. A synchronous interaction is given by a set of one or

more sequential action ï reaction events which occurs one in response to other, while

this sequence occurs the flow of the system is blocked. An asynchronous interaction

represents a set of one or more events that will cause one or more results that not

necessary are generated immediately or sequentially.

Dix et al. [18] says that Human Computer Interaction (or HCI) is ñthe study of

people, computer technology and the ways these influence each other. We study HCI

to determine how we can make this computer technology more usable by peopleò.

Hewett et al. [1] in their definition of HCI say that the principal concerns of this

area are: ñthe design, evaluation, and implementation of interactive computing

systems for human use and the study of major phenomena, surrounding themò.

Software architecture describes system components and connectors and rationality

used to build and distribute them. An architectural model establishes mechanisms of

interaction among components of the system itself, with components from other

systems and with users. Meanwhile, HCI field provides theoretical background for

supporting the relations between software and people.

Avouris [14] says that HCI also provides support for developing ñusableò software

systems, this is, systems that will have a set of attributes based in necessary effort for

using it and for assessment of their use by a given set of users.

Human System Interaction is an aspect that has been associated with usability in

the ISO TR 18529 [3]; according to this standard, the term is related to how people

can use systemôs capabilities in a certain context. In a paper written by Abran et al.

[16], we can find that usability has been defined in several ways by researchers and

standardization bodies; consequently in this article we donôt find a unique definition

of the term, but we can read three descriptions for this quality characteristic, each one

from a different viewpoint:

ñ1. For the end-user, software usability is essential because it is a determinant of

performance: an application, which features good usability, will allow the user to

perform the expected task faster and more efficiently.

2. For managers, usability is a major decision point in selecting a product, as this

decision will have a direct influence on the learnability of the chosen system, and

hence on the productivity of those who use it.

3. For software developers, usability describes the internal attributes of a system,

including issues like design quality, documentation maintainability.ò

We can see that the affirmation of Abran et al. sounds logic because usability is a

broad concept that has been studied and defined by many authors [9], [10], [11], [12],

[13], [16], [17] (and a long list of etc.). Those researchers have associated this

characteristic to manageability, learnability, attractiveness, performance, time

behavior, understandability, correctness, easiness to use and memorize, etc. In this

article we only use this concept as a synonym of expected system behavior in a

general way, because boarding all these concepts could take us to a different field out

of the scope of the paper.

2 Problem

Several authors like Bass et al. [2] have established that usability, a central concern of

HCI, needs to be supported by well designed software architectures. But in these

works, usability has been closely related only to synchronous interactions.

Asynchronous relations between users and software systems are hardly studied in

these days where usability of graphical user interfaces represents the main concern of

computer communication with humans, and they are expected to give immediate

answer to each action. But, a lot of GUIôs also need to make use of asynchronous

interactions. A web form used for collecting information from the user is an example

of this need. If those interactions arenôt properly described by architectural models

they will affect usability.

Both kinds of interactions have applications for different problems so they need to

be considered when designing software architectures for usable systems. Needless to

say that synchronous system interaction (SSI) and asynchronous system interaction

(ASI) have different characteristics and uses.

SSI is very flexible, and it can be adapted to situations where a process is not

defined by an ordered sequence of tasks that will be repeated every time in the same

way. User can get control of the application to make tasks requiring precision and

immediate response to decisions that must be taken by people.

ASI is suitable for management of large volumes of information which require a

lot of processing time and little attention of the user. This mechanism can help to

reduce variability of processes and to simplify applications by reducing unexpected

inputs. Also, if we cannot establish immediate communication with the system, for

example, when we have to take measures on extreme conditions with a remote

autonomous device, ASI could be the best approach.

An architectural model must describe at a high abstraction level a solution space

for a given set of requirements and constraints established for a group of stakeholders

[4]. Therefore, software architecture must define a system with enough elements to

satisfy stakeholdersô concerns under process constraints.

Deciding when a system must employ asynchronous or synchronous interaction is

critical for system usability perception. When a user takes control of a system he

expects to receive answers from it in a given way and time under certain conditions. If

a user is expecting an immediate (synchronous) response from a system and it isn´t

produced he will think that system is not working correctly. In the other hand, if user

is not expecting to receive an answer from the system maybe he will not be attending

the system when needed and it will stop working until response have been given.

We can describe systems with efficient mechanisms for human-computer

interactions in an architectural model. Software architecture will define system

capability to interact with people in a synchronous or asynchronous way. Many

systems will need to combine both kinds of interactions. Without adequate software

architecture, design of those systems could be too complex.

Selecting the best suited interaction type will impact usability perception about the

system. The kind of interaction must guide design efforts to select or create

architectural patterns to support it and to enhance not only usability but also other

qualities of the system like performance or security, for example.

 But, architectural patterns might be generalized; after all, they need to be

extensively used in the system. Simplification can be done by implementing reusable

components to reduce system complexity and encourage developers to produce other

critical common functionalities with ñless effortò and ñmore qualityò.

3 Proposal

This work has its focus on interactions, as one of the elements that must be described

by a component to be integrated as a common element of a software architecture. We

distinguish two kinds of interactions: synchronous (SSI), which deal with sequential

pairs of action-reaction processes; and asynchronous (ASI), related to multiple inputs

with no special order, and a final output which contain results and information of

found exceptions.

Fig. 1. Synchronous and asynchronous human-system interaction mechanisms

In Fig. 1, we can see how SSI and ASI work. Synchronous interaction establish a

close human-system relation; user must be continuously attending to processing

behavior and correct immediately any unexpected situation. Asynchronous interaction

doesnôt expect to have support from the user to continue its operation when an

exception occurs.

We can think that SSI must take care of a mechanism for a sequential model of

input, processing of tasks, output and exception handling, blocking the whole system

until finishing a task. But, this is just a simplistic approach of the process.

Sometimes, an input must be validated; if itôs incorrect a feedback mechanism will

be needed. More complex interactions will need to implement mechanism for

management of: user identity, access authorization level, contextual help, etc. But, all

this interactions have something in common; they have an immediate response to

each event.

Events can be produced by human, hardware or software actions and they can

occur sequentially or in parallel. SSI processes can be well managed when events take

place sequentially; but, parallel events bring some troubles when handling them. In a

SSI interaction process with multiple parallel events, users might need to answer to

multiple questions sequentially to go on with a process, but probably they will not

know in which order they must do that.

ASI produces an output as SSI does, but we donôt expect to have immediate

feedback of each event. We can have multiple inputs that aren´t in a specific order;

maybe they are processed in a parallel way, and at last will have an output and a

report of exceptions.

When using ASI, design of GUI is simplified because outputs will be recorded

prior to being showed. When we have parallel processing this characteristic is very

useful, because the order of required answers can be stated by a program and

displayed in just one view.

ASI has other kind of risks; a large job executed by different processors might stop

working or give us incorrect outputs when a failure in one of its task occurs if the user

doesnôt correct an input when an exception is detected.

:Object1 :Object2

Asynchronous message

Synchronous message

Return

Fig. 2. Synchronous and asynchronous messages representation in UML

Synchronous and asynchronous human system interactions must be combined in a

system to complement each one. UMLôs sequence diagrams can help us to express

these interactions (see Figure 2). But, we need to develop architectural components to

handle those combinations that could be too complex.

Fig. 3. Asynchronous-Synchronous System Interaction control

